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Temperature (oC)

2010 ASME Boiler Pressure Vessel Code, Sec. II, from Tables 1A and 1B, July 1, 2010, New York, NY (compiled by Mark Anderson)
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Temperature Limits of Metal Alloy Printed Circuit HEXs
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Attributes of ZrC/W-based Composites

1. V. N. Eremenko, T. Y. Velikanova, L. V. Artyukh, G. M. Aksel’rod, A. S. Vishnevskii, Phase Diagrams for Ceramists, Vol. X, C-W-Zr System (Fig.
9034), Ed. A. E. McHale, The American Ceramic Society, 1994.

◆ Chemical compatibility at high temperatures 
(No new compounds form between ZrC and W1)



Attributes of ZrC/W-based Composites

◆ Chemical compatibility at high temperatures 
(No new compounds form between ZrC and W)

◆ Tailorable for corrosion resistance
(ZrC/W cermets have been found to be resistant to corrosion in dry, oxygen-purified

MgCl2 (31.9 mol%)-KCl-based salt at 750oC in UHP Ar, with a projected recession of
<12 mm/yr)



Attributes of ZrC/W-based Composites
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Cu:ZrC/W interface 
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◆ Chemical compatibility at high temperatures 
(No new compounds form between ZrC and W)

◆ Tailorable for corrosion resistance
(A Cu layer on ZrC/W and modest CO addition to sCO2 fluid, to yield a supercritical

reducing fluid, has rendered ZrC/W cermets resistant to oxidation at 750oC/20 MPa1,2)



◆ Chemical compatibility at high temperatures 
(No new compounds form between ZrC and W)

◆ Tailorable for corrosion resistance
(A Cu layer on ZrC/W and modest CO addition to sCO2 fluid, to yield a supercritical

reducing fluid, has rendered ZrC/W cermets resistant to oxidation at 750oC/20 MPa)

◆ High thermal conductivity at 800oC
(k = 66.0 W/m-K1 vs. 22.1 W/m-K for IN740H2 and < 45 W/m.K for SiC3-5)
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◆ Chemical compatibility at high temperatures 
(No new compounds form between ZrC and W)

◆ Tailorable for corrosion resistance 
(A Cu layer on ZrC/W and modest CO addition to sCO2 fluid, to yield a supercritical

reducing fluid, has rendered ZrC/W cermets resistant to oxidation at 750oC/20 MPa)

◆ High thermal conductivity at 800oC
(k = 66.0 W/m-K vs. 22.1 W/m-K for IN740H and < 45 W/m.K for SiC)

◆ Resistance to thermal cycling and thermal shock
(at RT: CTE W = 4.5x10-6/°C and CTE ZrC = 4.0x10-6/°C; at 2700°C, CTE W = 9.2x10-6/°C
and CTE ZrC = 10.2x10-6/°C; No sf reduction after 10 cycles from RT - 750oC)

Attributes of ZrC/W-based Composites
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◆ Chemical compatibility at high temperatures 
(No new compounds form between ZrC and W)

◆ Tailorable for corrosion resistance 
(A Cu layer on ZrC/W and modest CO addition to sCO2 fluid, to yield a supercritical

reducing fluid, has rendered ZrC/W cermets resistant to oxidation at 750oC/20 MPa)

◆ High thermal conductivity at 800oC
(k = 66.0 W/m-K vs. 22.1 W/m-K for IN740H and < 45 W/m.K for SiC)

◆ Resistance to thermal cycling and thermal shock
(at RT: CTE W = 4.5x10-6/°C and CTE ZrC = 4.0x10-6/°C; at 2700°C, CTE W = 9.2x10-6/°C
and CTE ZrC = 10.2x10-6/°C; No sf reduction after 10 cycles from RT - 750oC)

◆ Enhanced toughness w.r.t. conventional monolithic ceramics
(K1C = 9.4+2.4 MPa.m1/2 vs. <0.8 MPa.m1/2 for Pyrex, <1.4 MPa.m1/2 for concrete,
<4.8 MPa.m1/2 for Hexoloy SiC1-3)

Attributes of ZrC/W-based Composites
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◆ Chemical compatibility at high temperatures 
(No new compounds form between ZrC and W)

◆ Tailorable for corrosion resistance 
(A Cu layer on ZrC/W and modest CO addition to sCO2 fluid, to yield a supercritical

reducing fluid, has rendered ZrC/W cermets resistant to oxidation at 750oC/20 MPa)

◆ High thermal conductivity at 800oC
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◆ Enhanced toughness w.r.t. conventional monolithic ceramics
(K1C = 9.4+2.4 MPa.m1/2 vs. <0.8 MPa.m1/2 for Pyrex, <1.4 MPa.m1/2 for concrete,
<4.8 MPa.m1/2 for Hexoloy SiC)

◆ High stiffness and retention of strength at 800oC 
(E = 44+16 x103 ksi/305+110 GPa; sF = 87+7 ksi/598+51 MPa at 800oC)
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◆ Chemical compatibility at high temperatures 
(No new compounds form between ZrC and W)

◆ Tailorable for corrosion resistance 
(A Cu layer on ZrC/W and modest CO addition to sCO2 fluid, to yield a supercritical

reducing fluid, has rendered ZrC/W cermets resistant to oxidation at 750oC/20 MPa)

◆ High thermal conductivity at 800oC
(k = 66.0 W/m-K vs. 22.1 W/m-K for IN740H and < 45 W/m.K for SiC)

◆ Resistance to thermal cycling and thermal shock
(at RT: CTE W = 4.5x10-6/°C and CTE ZrC = 4.0x10-6/°C; at 2700°C, CTE W = 9.2x10-6/°C
and CTE ZrC = 10.2x10-6/°C; No sf reduction after 10 cycles from RT - 750oC)

◆ Enhanced toughness w.r.t. conventional monolithic ceramics
(K1C = 9.4+2.4 MPa.m1/2 vs. <0.8 MPa.m1/2 for Pyrex, <1.4 MPa.m1/2 for concrete,
<4.8 MPa.m1/2 for Hexoloy SiC)

◆ High stiffness and retention of strength at 800oC 
(E = 44+16 x103 ksi/305+110 GPa; sF = 87+7 ksi/598+51 MPa at 800oC)

◆ Cost-effective fabrication of ZrC/W-based HEX plates

Attributes of ZrC/W-based Composites



Channeled Porous WC Preform Plate
Fabricate porous, channeled 
WC preform plates

Porous channeled WC preform plates (15 cm x 9 cm x 3 mm)
(pressing/stamping of WC/binder mixture, binder removal, light sintering)

20 mm

Fabrication of ZrC/W HEX Plates



Channeled Porous WC Preform Plate
Fabricate porous, channeled 
WC preform plates

Porous channeled WC preform plates (15 cm x 9 cm x 3 mm)
(pressing/stamping of WC/binder mixture, binder removal, light sintering)

20 mm

Fabrication of ZrC/W HEX Plates

20 mm

Secondary
electron image
of a fractured
cross-section
of a porous WC
channeled
preform plate



WC(s) + ½Zr2Cu(l) => ZrC(s) + W(s) + ½Cu(l)

where Vm[ZrC + W] = 2.01Vm[WC]

WC

Zr2Cu

Infiltrated Complete Rxn

W

ZrC

Partial Rxn

1. K. H. Sandhage, et al., U.S. Patents No. 6,833,337, 2004; No. 6,598,656, 2003; No. 6,407,022, 2002.
2. K. H. Sandhage, A. S. Henry, U.S. Patent Appln., No. 16/094,262, 2017; U.S. Provisional Patent Appln., 2016.
3. K. H. Sandhage, M. R. Caccia, U.S. Patent Appln., No. 16/503,117, 2019; U.S. Provisional Patent Appln., 2018.

Displacive Compensation of Porosity (DCP) Process1-3



Channeled Porous WC Preform Plate
Fabricate porous, channeled 
WC preform plates

Fabrication of ZrC/W HEX Plates

Generate dense, net-size
channeled ZrC/W plates via
the DCP processChanneled ZrC/W Plate

Reactive Conversion

20 mm

Backscattered 
electron image 
of a polished 
cross-section of 
a dense, ZrC/W 
channeled plate



Channeled ZrC/W Plate

Dense ZrC/W Plate

Joining

Channeled ZrC/W Plate

Reactive Conversion

BSE image of 
a diffusion-
bonded ZrC/W 
plate pair 
(1600oC, 2 h, 
10 MPa)

Fabrication of ZrC/W HEX Plates

Channeled Porous WC Preform Plate
Fabricate porous, channeled 
WC preform plates

Generate dense, net-size
channeled ZrC/W plates via
the DCP process



◆ ZrC/W-based cermets provide an unusual and attractive
combination of high-temperature mechanical and thermal properties
relative to Fe- and Ni-based alloys

◆ ZrC/W composites (and other oxidizable materials, including metal
alloys) can be endowed with corrosion resistance in supercritical
CO2-based fluids via use of a new concept1,2:

a supercritical buffered (reducing) CO/CO2 fluid

Summary and Ongoing Work
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◆ ZrC/W-based cermets provide an unusual and attractive
combination of high-temperature mechanical and thermal properties
relative to Fe- and Ni-based alloys

◆ ZrC/W composites (and other oxidizable materials, including metal
alloys) can be endowed with corrosion resistance in supercritical
CO2-based fluids via use of a new concept:

a supercritical buffered (reducing) CO/CO2 fluid

◆ Scalable, low-cost ceramic forming methods, coupled with a shape/
size-preserving reactive melt infiltration (DCP) process, can be
used to fabricate ZrC/W HEX plates with tailorable channel patterns

◆ Diffusion bonding of ZrC/W plates, and brazing of Cu to Ni alloy
headers, can provide high-pressure seals for use with
sCO/CO2-bearing fluids at 720oC

Summary and Ongoing Work



◆ Chemical compatibility at high temperatures
(Al2O3 and Cr do not undergo a displacement rxn; Tm[Al2O3] = 2054oC; Tm[Cr] =
1863oC)

◆ Creep resistance
(Al2O3 is quite creep resistant at 750oC; cermets with a continuous Al2O3 matrix have

exhibited negligible creep at 1000oC, 20 MPa)

◆ Failure strength and toughness
(Four-point-bend sF (64 vol% Al2O3/36 vol% Cr) = 47x103 psi/320 MPa at 750oC; K1C =
7.2 MPa.m1/2 at RT)

◆ Thermal expansion match
(100.DL/Lo from 25oC to 750oC: Cr = 0.71%, Al2O3 = 0.63%)

◆ Thermal conductivity
(ROM k(64 vol% Al2O3/36 vol% Cr) = 28 W/m-K at 750oC vs. 23.4 W/m-K for H230)

◆ Oxidation resistance
(slow parabolic kinetics at 750oC in CO2 and air1)

1. T. D. Nguyen, M. Caccia, C. K. McCormack, G. Itskos, K. H. Sandhage, “Corrosion of Al2O3/Cr and Ti2O3/Cr 
Composites in Flowing Air and CO2 at 750℃,” Corros. Sci., 179, 109115-1 to 109115-12 (2021) 

Attributes of Al2O3/Cr-based Composites
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